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Abstract

Understanding how brain activity translates into behavior is a grand challenge in neu-

roscientific research. Simultaneous computational modeling of both measures offers

to address this question. The extension of the dynamic causal modeling (DCM)

framework for blood oxygenation level-dependent (BOLD) responses to behavior

(bDCM) constitutes such a modeling approach. However, only very few studies have

employed and evaluated bDCM, and its application has been restricted to binary

behavioral responses, limiting more general statements about its validity. This study

used bDCM to model reaction times in a spatial attention task, which involved two

separate runs with either horizontal or vertical stimulus configurations. We recorded

fMRI data and reaction times (n= 26) and compared bDCM with classical DCM and a

behavioral Rescorla–Wagner model using Bayesian model selection and goodness of

fit statistics. Results indicate that bDCM performed equally well as classical DCM

when modeling BOLD responses and as good as the Rescorla–Wagner model when

modeling reaction times. Although our data revealed practical limitations of the cur-

rent bDCM approach that warrant further investigation, we conclude that bDCM

constitutes a promising method for investigating the link between brain activity and

behavior.
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1 | INTRODUCTION

Computational modeling can deepen our understanding of how the

brain processes information and produces overt behavior. In psychol-

ogy, computational modeling has a long history of describing and

explaining behavioral concepts. For example, reinforcement learning

algorithms have been used to explain classical conditioning

(Rescorla & Wagner, 1972), drift-diffusion models have been used to

model reaction times in decision-making tasks (Ratcliff, 1978), and

race models of reaction times have been used as theoretical formula-

tions of visual–spatial attention (Bundesen, 1990). Similarly, different

computational modeling approaches have been employed in neurosci-

ence and neuroimaging. For example, generative graphical models of

brain connectivity describing blood oxygenation level-dependent

(BOLD) amplitudes in response to experimental inputs can be esti-

mated using dynamic causal modeling (DCM) (Friston et al., 2017;

Friston, Harrison, & Penny, 2003), and multivariate temporal response

functions have been used to model ongoing sensory stimulation, likeSimone Vossel and Ralph Weidner contributed equally to this study.
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speech, in electrophysiological recordings (Crosse, Di Liberto,

Bednar, & Lalor, 2016).

Although computational models are very prominent in the two

fields, behavioral and neural responses are mostly treated separately

(Turner, Forstmann, Love, Palmeri, & van Maanen, 2017). However, a

combined modeling framework could provide deeper insights into the

neural processes and the emergence of behavior. Different approaches

have been proposed here: one possibility is to correlate the parameters

of neural and behavioral models to describe how the different mea-

sures are related across different participants (Vossel, Weidner, Moos, &

Fink, 2016). Alternatively, in model-based fMRI, the behavioral compu-

tational model's outputs (or hidden states) are used as a factor in a clas-

sical GLM analysis. One such factor could be a participant's perceived

cue validity in a probabilistic spatial cueing task, recovered from reac-

tion times (e.g., Dombert, Kuhns, Mengotti, Fink, & Vossel, 2016).

Leveraging the theory-driven outputs of cognitive models allowed to

determine more specific brain activation patterns of cognitive pro-

cesses than by using nonspecific measures such as reaction times

(Turner et al., 2017). A third option is a joint modeling approach (Turner

et al., 2017). Here, an overarching set of parameters is used to describe

both brain activity and behavior. An example is a study by

Nunez (2015), where the drift-diffusion model parameters were con-

strained with task-based brain activity, incorporating the covariation

between reaction times and neural activity on a trial-by-trial basis.

Although these approaches are tremendously useful, none of

them employs an integrative model describing the generation of brain

activity and behavior, which would allow us to directly investigate the

hidden processes behind the two measurements. Rigoux and

Daunizeau (2015) provided such a framework, where an additional

output function extends DCM to describe behavioral responses

(behavioral DCM, bDCM). This simultaneous modeling has high

descriptive power and allows thorough diagnostics of the model. For

example, by disabling specific nodes in the network (i.e., artificial

lesions), conclusions can be drawn about the contribution or necessity

of different brain regions to the emergence of behavioral patterns. So

far—to our knowledge—bDCM has been applied to a larger dataset in

one study only, which modeled binary choices in an economic

decision-making task (Shaw et al., 2019).

The current study shows that bDCM can be extended to continu-

ous measures (i.e., reaction times). Furthermore, we provide a direct

comparison between bDCM and classical DCM, and between bDCM

and an adjusted version of the Rescorla–Wagner model (Rescorla &

Wagner, 1972; Vossel et al., 2014). We employ Bayesian model com-

parison based on the free energy of competing models and classical

metrics of accuracy (mean absolute error and R2-score).

As a testing ground, we modeled the effects of attentional reor-

ientation along the horizontal and vertical meridians in a spatial cueing

paradigm, where participants had to report the orientation of a pre-

cued Gabor patch. In trials in which invalid cues indicated an incorrect

location of the target Gabor patch (20% of the trials), participants had

to reorient their attention to the opposite location (Posner, 1980).

This paradigm has been found to elicit reliable reaction time differ-

ences between invalid and valid trials, both on the individual and the

group level (Hedge, Powell, & Sumner, 2017). Additionally, it has been

shown that the internal representation of cue validity can be modeled

using the Rescorla–Wagner model as a generative model of reaction

times (Mengotti, Dombert, Fink, & Vossel, 2017; Vossel, Mathys,

et al., 2014).

Besides the reliable behavioral effects, the cortical networks

involved in this task have been characterized by multiple studies. We

have previously analyzed the present dataset using classical DCM

(Steinkamp, Vossel, Fink, & Weidner, 2020), which has also been used

in similar cueing paradigms (c.f., Vossel, Weidner, Driver, Friston, &

Fink, 2012). Moreover, studies in patients with stroke-induced lesions

have revealed brain regions critically involved in spatial cueing tasks

(Corbetta & Shulman, 2011; Malherbe et al., 2018; Posner, Walker,

Friedrich, & Rafal, 1984). It is well established that the orientation of

visual–spatial attention is mediated by a dorsal fronto-parietal atten-

tion network consisting of the intraparietal sulci (IPS) and the frontal

eye fields (FEF). This network interacts with a ventral fronto-parietal

attention network of ventral frontal cortex and the temporoparietal

junction (TPJ) when a sudden reorientation of attention is necessary

(Corbetta, Kincade, Lewis, Snyder, & Sapir, 2005; Corbetta &

Shulman, 2011). In patients with spatial neglect, damage to ventral

parietal regions such as TPJ causes a deficit in reorienting to contra-

lesional targets. Moreover, it leads to dysfunctions in structurally

intact dorsal regions such as the IPS (Corbetta et al., 2005), and direct

lesions to the IPS have also been associated with impaired reorienting

(Gillebert et al., 2011).

As IPS, FEF, and TPJ may differentially contribute to the behav-

ioral outcome (RT), we used Bayesian model comparison to identify

which regions convey information about the behavioral dynamics

after accounting for the complexity of the network model.

2 | METHODS

2.1 | Participants

Data were collected from 29 participants (15 female, 21–39 years old,

M = 25, SD = 3) with normal or corrected-to-normal vision [all right-

handed, Edinburgh handedness Inventory (Oldfield, 1971), M = 0.86,

SD = 0.14], who provided written informed consent to participate in

the study. Participants had to be older than 18 and younger than

40 years old and had to be right-handed. Participants with neurologi-

cal or psychiatric disorders were excluded from the study. Due to the

fMRI protocol, we also excluded participants with metal implants and

tattoos. One participant had to be excluded subsequently because of

noncompliance. Another participant was excluded due to excessive

head movement (predefined criteria translation >3 mm, rotation >3�).

Furthermore, we could not extract the time series for the left-TPJ vol-

ume of interes (VOI) in one participant. Therefore, the final sample

included 26 participants. The ethics board of the German Psychologi-

cal Association had approved the study. Volunteers were paid 15€ per

hour for their participation. The dataset has been used in a previous

study (see Steinkamp et al., 2020).

STEINKAMP ET AL. 1851



2.2 | Task

Participants performed a spatial cueing task while lying in a 3 T Trio

(Siemens, Erlangen) MRI scanner. Stimuli were displayed on a screen

behind the scanner bore, which could be seen via a mirror (mirror to

display distance: 245 cm) mounted on a 32-channel head coil. The

participants' task was to report the orientation (horizontal/vertical) of

a target Gabor patch (size 1� visual angle) by button presses of either

the left or the right index finger while continuously fixating a diamond

in the center of the screen (0.5� visual angle). A brightening of the

central diamond (500 ms) indicated the beginning of a trial and was

followed by a spatial cue after 1,000 ms (brightening of one of the

diamond's edges for 200 ms) that indicated the location of the follow-

ing target stimulus with 80% probability. Participants were explicitly

informed about the percentage of cue validity. The possible target

locations were indicated by empty boxes (1� width) located to the fix-

ation diamond's left, right, top, and bottom (4� visual angle). After

400 or 600 ms, the target stimulus appeared for 250 ms at the cued

location or in the box opposite to it. Distractor stimuli (constructed

from two overlapping Gabor patches that were rotated by �45� and

45�, respectively) appeared simultaneously in the remaining three

locations. Participants performed two runs of the spatial cueing para-

digm. In one run, targets and cues occurred along the vertical axis, in

another along the horizontal axis (see Figure 1).

Each run consisted of five blocks of 40 trials (32 valid, 8 invalid).

All possible combinations of target location, target orientation, and

interstimulus interval were presented in random order within each

block. The time between the trials was drawn from the set of 2.0, 2.7,

3.2, 3.9, or 4.5 s with equal probability. Between the blocks, there

was a break of 10–13 s.

Run order (vertical or horizontal first) and the response mapping

(left index finger for vertical orientations/right index finger for hori-

zontal orientations or vice versa) were counterbalanced across partici-

pants. Before the experiment, participants performed a rapid

detection task to train the mapping of stimulus–response associations.

Here, targets appeared rapidly in the middle of the screen, and partici-

pants had to press the corresponding button as fast as possible.

Immediate feedback and a running score of their accuracy were given.

Additionally, there were 20 practice trials with feedback before each

run of the main experiment.

Stimulus presentation and response collection were controlled

using PsychoPy (version 1.85.3, Peirce, 2007, 2008; Peirce

et al., 2019).

2.3 | Behavioral analysis

The mean reaction times were calculated for each participant, cueing

condition, and target location. Before calculating the mean reaction

times, we preprocessed the data for each participant separately. First,

incorrect, missed, and outlier trials were removed. Outliers were

defined as trials with reaction times below 0.2 s or greater than the

75th percentile + 3 � interquartile range (IQR). The higher threshold

for outlier exclusion was chosen to retain as many trials as possible in

the analysis (removed trials, including errors, in the horizontal run:

invalid M = 2.54, SD = 2.63; valid M = 6.62, SD = 5.91; in the vertical

run: invalid M = 3.12, SD = 1.8; valid M = 6.0, SD = 3.94).

For the analysis of the “validity effect” (i.e., the slowing of reac-

tion times in invalid as compared with valid trials), the data were

pooled across the two runs (horizontal/vertical). The mean reaction

times of the 2 � 4 (cueing � target location) factorial design were

then analyzed in a repeated-measures ANOVA. The analysis was con-

ducted in Python 3.7 using pingouin (version 0.3.3; Vallat, 2018).

2.4 | fMRI analyses

For each participant and each run, we collected 557 T2*-weighted

images using an echo-planar imaging (EPI) sequence [time of repeti-

tion (TR) 2.2 s; echo time (TE) 30 ms; flip angle 90�]. Each recorded

volume consisted of 36 transverse slices with a slice thickness of

3 mm and a field of view of 200 mm. The voxel size was

3.1 � 3.1 � 3.3 mm. The first five images were discarded to account

for T1 equilibrium artifacts. Next to functional images, we also

F IGURE 1 Illustration of the spatial
cueing paradigm. In the upper row, a valid
trial of the horizontal run is shown. The
lower row depicts an example of an
invalid trial in the vertical run. Reused
from Steinkamp et al. (2020), licensed
under a Creative Commons Attribution
4.0 International License (https://
creativecommons.org/licenses/by/4.0/)
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obtained an anatomical T1-weighted image for each participant, which

was used in the preprocessing.

We preprocessed the fMRI data using fmriprep (version 1.1.1;

Esteban et al., 2019), a robust and standardized pipeline, which applies

slice-time correction, realignment, and normalization to MNI space. A

detailed preprocessing report can be created automatically (see

http://fmriprep.readthedocs.io/en/1.1.1/workflows.html) and is

included in the Supporting Information.

Data was further spatially smoothed using an 8 � 8 � 8 mm

FWHM Gaussian kernel. This step was done in Matlab 2018b (The

MathWorks, Inc., Natick, Massachusetts), using SPM12 (version

7.771; Friston, 2007).

2.5 | fMRI—GLM

A classical GLM analysis was performed to identify activation peaks

during attentional orientation and reorientation, later used to extract

BOLD time-series data for the DCM analysis. The GLM analysis was

conducted using SPM12. First-level models were created with four

regressors of interest for each run, representing invalidly cued targets

on the left (iL) and on the right (iR), validly cued targets on the left

(vL) and the right (vR) for the horizontal run, and invalidly and validly

cued targets in the lower (iD, vD) and the upper (iU, vU) part of the

screen in the vertical run.

To account for other physiological noise in the BOLD signal, we

added the three rotation and three translation estimates of the rigid

body transform, the average white matter signal, and the average

cerebral spinal fluid (CSF) signal as nuisance regressors. We further

included the squared time-series of the eight regressors, the time-

shifted time-series (t � 1), as well as the square of the shifted time-

series, resulting in a total of 32 nuisance regressors (Friston, Williams,

Howard, Frackowiak, & Turner, 1996). We also applied a high pass fil-

ter at 128 s. For each run, four first-level contrasts were calculated: T-

contrasts of valid and invalid trials versus baseline, an F-contrast of

target onset versus baseline, which was used in the VOI analysis, and

a differential contrast of invalid trials greater than valid trials. The lat-

ter contrast isolates brain regions involved in attentional

reorientation.

At the group (second)-level, we investigated the differential con-

trast of invalid > valid trials using two planned one sample permuta-

tion t-tests against 0 using SnPM 13 (Nichols & Holmes, 2002), with

default settings, 10,000 permutations, and no additional variance

smoothing, using the initial set of 27 participants. The cluster forming

threshold was estimated during the processes with a predefined

voxel-level cutoff of p < .001.

2.6 | Modeling analysis

In the following, we will describe the modeling approaches used in

our analysis, followed by a description of our model assessments and

further analyses.

2.6.1 | Rescorla–Wagner model

We employed a variant of the Rescorla–Wagner model used previ-

ously (Mengotti et al., 2017). While this study was interested in the α

parameter (the learning rate that describes how quickly participants

adjust their internal assessment of the cue-validity), we applied this

modeling approach to simulate reaction times in a trial-by-trial fash-

ion. For parameter estimation, we defined new functions for the varia-

tional Bayesian analysis (VBA) toolbox (clone from master, in January

2020, Daunizeau, Adam, & Rigoux, 2014).

We used the following reinforcement learning formula as the evo-

lution function, describing the hidden process governing the genera-

tion of reaction times:

vt ¼ v t�1ð Þ þα*δt

where δt ¼ ut�v t�1ð Þ describes the prediction error at trial t. The

external input ut � 0,1½ � describes whether the cue at time t was either

valid (0) or invalid (1), α is the learning rate, and vt is the participant's

perceived cue invalidity (i.e., the probability, that the cue will be inva-

lid) after observation of trial t.

The observation function (i.e., the mapping from perceived cue

invalidity to reaction times) was defined as:

gt ¼ ut* ζiþζ2*vt�1ð Þþ 1�utð Þ* ζv þζ2* 1�vt�1ð Þ½ �

According to this formulation, the perceived cue invalidity of the pre-

vious trial governs the responses, with different bias parameters for valid

and invalid trials and a general scaling parameter of the predictions.

To keep the behavioral dynamics as close as possible to the

observed data, we set the reaction time of missing and outlier trials to

0 but ignored these trials during model inversion. The mean and stan-

dard deviation over participants of the posterior estimates can be

found in the Section S6 in Supporting Information.

Table 1 depicts the Gaussian priors used in our estimation.

2.6.2 | Behavioral DCM

In the following, we will provide a short overview of key concepts of

DCM. For a full derivation and detailed description of DCM (see,

Friston et al., 2003; Rigoux & Daunizeau, 2015; Stephan et al., 2008).

DCM is a full Bayesian approach to create a generative model of brain

dynamics and infer effective connectivity between selected brain

regions. In principle, DCM describes how experimental variations

(described by the input u) drive the neural activity (x, the hidden

states) in brain regions of interest in a dynamical system. The evolu-

tion function _x¼ f x,uð Þ½ � describes the temporal dynamics of the hid-

den states ( _x) and how they are influenced by external inputs (u). In

DCM for fMRI, the evolution function f is typically described as:

f x,u,θð Þ b¼ Axþ
X

j
ujB

jxþCu
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j corresponds to the number of inputs. The neural evolution parame-

ters in θ correspond to the entries in A (fixed connectivity between

brain regions), Bj (modulation of connection strength by input j), and C

(direct effects of inputs). Hemodynamic states z (dependent on the

neural states x) are then gated through an observation function:

y¼ g z,ϕð Þþϵ

This function captures BOLD signal variations based on the hemody-

namic states (z) and the hidden neural activity (x), with hemodynamic

parameters ϕ. This mapping allows to observe and infer the hidden

neural dynamics via the BOLD signal.

BDCM augments the described formulation of DCM by adding

new hidden states (r) for observed responses. The dynamic of r is

defined by rtþ1 ¼ h x,uð Þ�αrt, with h x,u,ψð Þ as an additional evolution

function, and gr rð Þþϵr as the observation function to map the hidden

neural dynamics to behavioral responses. The evolution function h of

the new “behavioral” state follows the same rationale as the function

f in the DCM formulation:

h x,u,ψð Þ b¼Arxþ
X

j
ujB

j
rxþCru:

Here the parameter vector ψ describes the linear (Ar ) components

of the behavioral state and the direct (Cr ) and modulatory (Bj
r ) influ-

ences of experimental manipulations. Ar is an analogy of the weight

vector in a regression model. In the original article, the neural states

were mapped to binary behavioral observations (button press absent

or present) via a sigmoidal function:

s rð Þ¼ 1

1þe�100* ρþrð Þ

Here, ρ is an unknown bias term, and r is the response or decision

state. In our study, we slightly adjusted the sigmoid mapping by

changing the scale on which it operates. As we are not expecting reac-

tion times slower than 3 s, we used this as an upper bound:

s rð Þ¼ 3

1þe�100* ρþrð Þ

Regions

As in our previous study (Steinkamp et al., 2020), we included bilateral

IPS and FEF in our DCM model, which correspond to the central

nodes of the dorsal fronto-parietal attention network (Vossel, Geng, &

Fink, 2014). Additionally, as part of the ventral attention network, we

included the TPJ bilaterally. As additional inclusions (e.g., the inferior/

middle frontal gyrus) would have increased model complexity and

computational resources (and time), we did not include other brain

regions, which may also play a role in attention reorienting.

Based on our assumptions about the dorsal and ventral attention

network's interplay, we created three automatic meta-analyses using

NeuroSynth (https://www.neurosynth.org/; Yarkoni, Poldrack,

Nichols, van Essen, & Wager, 2011) to define the seed coordinates for

the subsequent VOI analysis (see Table 2). Our regions of interest

were bilateral IPS (search term: “intraparietal sulcus”), bilateral FEF
(search term: “frontal eye”), and bilateral TPJ (search term: “tpj”). We

downloaded the corresponding association maps (associations, p < .01

FDR corrected) and identified the seed location as the peak voxel in

the cluster of interest, using the Anatomy toolbox (v2, Eickhoff

et al., 2005). In all three maps, the two largest clusters encompassed

our regions of interest in either the left or right hemispheres.

We used the participant level t-maps (thresholded at p < .1

uncorrected) in each run to search for individual local maxima in a

12 mm sphere around the seed coordinates. The first principal compo-

nent of BOLD time-courses in a 9 mm VOI around the participant's

maximum was extracted and adjusted based on the F-contrast defined

in the first-level analysis. Task-related activity for the IPS and FEF

VOIs was defined by the contrast of valid trials against baseline and

for TPJ by the contrast of invalid trials against the baseline.

Preprocessing

We preprocessed the BOLD signal by detrending each VOI signal

(spm_detrend) and scaling the BOLD amplitude across VOIs to a maxi-

mum value of 4 (see spm_dcm_estimate). Behavioral data were

extracted from the event data, and as in the previous analyses, error

trials, trials with missed responses, and RTs fulfilling the outlier crite-

rion (RT < 0.2 s and RT > 3 � IQR + UQ) were excluded.

BOLD data were resampled from a TR of 2.2 s to a sampling rate

of 1.1 s (by interspersing “NaN” values). The behavioral observations

were set to occur at the corresponding target onset, which was also

downsampled to a resolution of 1.1 s. No resampling of BOLD data

was performed for the classical DCM analysis. As the Rescorla–

Wagner model represents trial-by-trial dynamics, the corresponding

preprocessed reaction times were used, excluding error, missed, and

outlier trials.

For our modeling, we assumed homogenous HRF dynamics

across the six regions, fixing the initial states of the model to 0, and

estimating the shape of the observation noise hyper-prior

TABLE 1 Overview of parameters
and prior values of the Rescorla–Wagner
model

Parameters μ σ

α 0.5 0.5 To ensure 0 <α≤1, α was logit and inverse logit

transformed during parameter updating

ζv 0 1

ζi 0 1

ζ2 0 1

v0 0.5 1 Initial state of v

1854 STEINKAMP ET AL.
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TABLE 2 Regions and search-terms
for automated NeuroSynth meta-
analyses

Region NeuroSynth (accessed 10.10.19) Z-statistic X Y Z

IPS—Left “Intraparietal sulcus” 14.6 �30 �50 42

IPS—Right “Intraparietal sulcus” 13.5 40 �38 44

FEF—Left “Frontal eye” 13.9 �30 �4 52

FEF—Right “Frontal eye” 14.6 32 �6 52

TPJ—Left “Tpj” 8.56 �60 �54 20

TPJ—Right “Tpj” 11.4 58 �50 14

F IGURE 2 Top row, basic structure of the DCM and bDCM models. Regions were fully interconnected in each hemisphere, and homologous
regions were connected. All regions received driving input. We assumed that all regions' connections were modulated by invalid trials, except for
feedback and interhemispheric connections from FEF. In the lower part, we conducted Bayesian model selection to select the most plausible
output region(s), indicated by green arrows

STEINKAMP ET AL. 1855



distributions. For this, we assumed that we would be able to explain

10–90% of the variance in both the BOLD and the reaction time data.

The prior distributions over the other parameters were set to the

defaults of the VBA toolbox. We used the same hyperpriors for the

explained variance of the BOLD signal in the classical DCM analysis

and the Rescorla–Wagner model's behavioral responses.

To define the inputs into the DCM models, we created separate

SPM-design matrices that were only used to define the input streams.

Stream one (u1) was defined as the driving input to all six regions, con-

taining an impulse every time a target stimulus appeared (irrespective

of the cueing condition or target location). The second stream (u2)

was used purely for the modulatory effects, containing an impulse

only in invalidly cued targets. The input streams were extracted from

the SPM design matrix and were centered before entering the model

inversion (spm_detrend). As mentioned above, the Rescorla–Wagner

model is modeling trial-by-trial variations (rather than continuous

time), so the input to this model was a vector consisting of ones and

zeros, indicating whether the current trial is invalid or valid.

Model definition and comparison

Before bDCM was compared against models of single modalities (clas-

sical DCM and Rescorla–Wagner model, respectively), we conducted

Bayesian model selection to identify the most plausible configuration

of output connections (i.e., the region in which neural activity is linked

to the behavioral output). We used IPS, FEF, and TPJ as our brain

regions of interest as described above. The fixed connectivity struc-

tures of our model (i.e., the A-matrix) had complete connections in

each hemisphere and between homologous regions (Figure 2). As we

did not include visual areas in our modeling approach, all six regions

received driving input (C-matrix). For bidirectional intrahemispheric

and interhemispheric modulatory connections (B-matrix), we consid-

ered the IPS and TPJ. Connections in both hemispheres to the FEF

were unidirectional, assuming that there were no feedback modula-

tions from FEF to the other brain regions. We then investigated how

neural dynamics in the included brain regions are related to behavioral

dynamics. More specifically, we tested the following alternative

hypotheses regarding bDCM's Ar matrix:

• Neural activity in IPS drives behavior. IPS is a major hub region in

the dorsal attention network. It is thought to initiate top-down

modulation of visual areas when attention is oriented in space.

Moreover, it is often co-activated together with ventral

frontoparietal regions during attentional reorienting in invalid trials,

and isolated IPS lesions in stroke patients can lead to reorienting

impairments (Gillebert et al., 2011; Vossel, Geng, & Fink, 2014).

• Neural activity in FEF drives behavior. FEF is also part of the dorsal

attention system and is crucially involved in covert and overt atten-

tional orienting (Corbetta, Kincade, & Shulman, 2002; Rizzolatti,

Riggio, Dascola, & Umiltá, 1987).

• Neural activity in TPJ drives behavior. TPJ is the ventral region in

our network model and has critically been related to detecting

unattended behaviorally relevant events such as invalidly cued tar-

gets and mismatches between predicted and observed inputs

(Corbetta, Patel, & Shulman, 2008; Mengotti, Käsbauer, Fink, &

Vossel, 2020).

• All three regions drive behavior. This model was included to test

whether a mix of all brain regions most plausibly describes behav-

ior, despite the additional complexity.

Bayesian model comparison was conducted with random effects

(RFX) in the VBA-toolbox (VBA_groupBMCbtwConds) and fixed effects

(FFX) to select the most likely output region (IPS, TPJ, FEF, or all).

After selecting the most plausible output region, we inverted a

classical DCM model by setting the prior mean and variance of the

parameter set ψ to 0, essentially disabling the additional parameters

necessary to fit behavioral dynamics. This included both parameters in

the observation and evolution function. Moreover, we inverted

models that included predictions from the behavioral Rescorla–

Wagner model.

The following models were compared:

• bDCM (with output region selected as described above)

• DCM: The bDCM model above, but with the prior mean and vari-

ance of the evolution (i.e., Ar ) and observation parameters set to

0, so that they are not considered in the model inversion. This

model was chosen to compare the single modality model of fMRI

and test whether bDCM merits its additional complexity.

• bDCM + Rescorla–Wagner (bDCM + RW): In this model, we added

an additional input stream (u3), including the RT predictions derived

by the Rescorla–Wagner model. The input-stream, however, was not

included in the DCM part of the bDCM (i.e., A, B, C, and D) but was

directly gated to the output function via the Cr matrix. This model

was included to assess if bDCM's predictions have additional value

compared with the Rescorla–Wagner model's predictions.

• bDCM infused with the Rescorla–Wagner model (bDCM � RW): In

this model, we replaced the input coding for invalid trials (u2) with

the prediction of the cue invalidity (v t�1ð Þ) of the Rescorla–Wagner

model—note that this input was also centered. This tested whether

the cognitive processes modeled by the Rescorla–Wagner model

provide information over and above bDCM.

2.6.3 | Model evaluation of the Rescorla–Wagner
model, classical DCM, and bDCM

In addition to the Bayesian model selection, we compared the models

based on their outputs, applying classical goodness of fit statistics.

The R2-score,

SStot ¼
Xn

t
yt�yð Þ2

SSres ¼
Xn

t
yt�bytð Þ2

R2 ¼1� SSres
SStot

� �
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where yt describes the datapoint at t, with n time points in total, was

calculated. The average of y is defined as y, and by are predicted values.

Similarly, we also calculated the mean absolute error (MAE)

MAE¼1
n

Xn

t
yt�bytj j

Here, we estimated for each subject whether the fit statistics

were different from random for each of the model outputs by permu-

tation testing. The predicted values by were shuffled 10,000 times

(without replacement), and the two statistics were recalculated. The

permutation p-value for the models is then reported as the proportion

of fits greater than the model's R2-score (smaller in case of MAE) plus

one divided by the number of permutations plus one (Ojala &

Garriga, 2010). At the group level, we report the proportion of signifi-

cant models based on a permutation p-value <.05.

To compare the model performance on reaction times, we used

(Bayesian-) paired t-tests to test for differences between the fit statis-

tics [R2-score and mean absolute error (MAE)], separately for the two

runs. In Section S7 in Supporting Information, we also present the

results of a Leave-One-Trial-Out cross-validation procedure on the

behavioral data of both the Rescorla–Wagner and the bDCM models

to compare the generalization between the two models. A modified

version of the VBA_press.m function was used to calculate predicted

residual error sum of squares (PRESS) statistics.

We then investigated how well bDCM and the Rescorla–Wagner

model simulate the underlying reaction time distributions. This was

achieved by calculating a two-sample Kolmogorov–Smirnov test

between the model-derived reaction times of the Rescorla–Wagner

model or bDCM and the measured reaction times. Furthermore,

paired t-tests were used on the distance between the distributions

(as determined by the KS-test) to test which simulation followed the

measured data more closely (i.e., had a smaller distance at the group

level).

Finally, we were also interested in whether there are “spillover
effects” from the previous trial in the reaction time data (i.e., how

valid and invalid cues or errors in the previous trial affected the reac-

tion time in the current trial). We used a linear mixed-effects model

with participant as a random factor as in other analyses. We also

tested whether the stimulus onset asynchrony (SOA, 600 or 800 ms)

influenced reaction time data using the same models. Notably, we

performed this analysis on both the measured reaction times and the

simulated reaction times of the Rescorla–Wagner and bDCM to inves-

tigate how the two modeling approaches represent trial history

effects.

We applied a mixed-effects linear model for each error term to

compare differences in performance to the BOLD data fit between

classical DCM and bDCM. The mixed-effects model followed the fol-

lowing formula, where “Score” either depicts the mean absolute error

or the R2-score:

Score ~ModelþRegionþRunþModel*RegionþModel*Run

and Model has the two factors “DCM” and “bDCM,” “Run” describes
either the horizontal or vertical run, and “Region” indicates the

“Score” for either VOI. Each model also contained a random intercept

for each participant.

2.7 | Lesion analysis

We also applied lesion analysis to the bDCM model, as described in

Rigoux and Daunizeau (2015). Here, the afferent connections toward

a single brain region were reduced to 0 to simulate the absence of this

region (i.e., to create an artificial lesion). The simulated data from such

a lesioned model can be used to better understand behavioral changes

after damage to certain brain regions.

As mentioned above, much of our knowledge about the brain

regions involved in the Posner task is based on lesions studies. Hence,

based on the literature, we would assume that lesions to the right

(and potentially also left) TPJ lead to an increase in reaction times

toward invalidly cued targets in the contralesional hemifield, whereas

the remaining conditions should be relatively unaffected (Beume

et al., 2017; Corbetta & Shulman, 2011). For lesions to the left and

right IPS, we expected extinction-like patterns with prolonged reac-

tion times for contralesional stimuli. However, just as TPJ lesions,

focal IPS lesions can also lead to reorienting deficits in invalid trials

(Gillebert et al., 2011; Posner et al., 1984). Lesion evidence for FEF is

scarce, but TMS studies have shown that interference with right FEF

leads to a general decrease in performance in both hemifields,

whereas damage to left FEF only affects targets in the contralesional

hemifield (Duecker & Sack, 2015; Hung, Driver, & Walsh, 2011).

For effects along the vertical meridian, the evidence is unfortu-

nately very scarce. While some studies have found extinction of stim-

uli, particularly for the lower-left visual field after right parietal lesions

(Müri, Cazzoli, Nyffeler, & Pflugshaupt, 2009), others found neglect of

the upper-left visual field after lesions to the right temporal lobe

(Morris, Ma�nkowska, & Heilman, 2020). Classical altitudinal or vertical

neglect has more often been attributed to bilateral lesions (Rapcsak,

Cimino, & Heilman, 1988; Shelton, Bowers, & Heilman, 1990).

Since numerous models were numerically unstable in the lesion

analysis, we cleaned the simulated data by removing datasets on a per

lesion basis where the variance after the 10th trial was close to 0 (i.-

e., the simulated reaction times flatlined at the maximum/minimum of

the sigmoid function) and which returned nonvalues.

3 | RESULTS

3.1 | Behavior

To test for reaction time effects of cueing (valid or invalid) and target-

location (left, right, down, up), as well as their interactions, we applied

a 2 � 4 repeated measures ANOVA (see also Figure 3). There was no

significant effect of target-side [F(1.965, 49.125) = 0.1, p = .902,
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η2p ¼0:004, ε = 0.655]. However, a significant main effect of cueing [F

(1, 25) = 26.647, p< .001, η2p ¼0:516, ε = 1.0] and a weak significant

interaction between target-side and cueing [F(2.88, 72) = 2.866,

p = .045, η2p ¼0:103, ε = 0.96) were observed. All reported p-values

were Greenhouse–Geisser-corrected to account for a lack of spheric-

ity. An additional analysis confirmed that the experimental design's

stimulus-onset-asynchrony did not impact our experimental data (-

Section S3 in Supporting Information).

3.2 | FMRI GLM

The contrasts of invalid versus valid trials isolating reorienting-related

activity for the two runs are reported in Figure 4 (group t-maps are

provided on neurovault: https://identifiers.org/neurovault.collection:

6895, [Gorgolewski et al., 2015], the corresponding tables reporting

global and local maxima for the different clusters are in Section S2

in Supporting Information). We performed a one-sample permutation

t-test on the first-level contrast images (invalid > valid), with a

predefined cluster-forming threshold of p < .001, the results are

reported family-wise error corrected at p < .05 (cluster threshold hori-

zontal k = 54 voxels, vertical k = 61 voxels). We found areas classi-

cally associated with the dorsal and ventral attention networks in

both maps. For example, we observed significant activations in

bilateral intraparietal sulci and frontal-eye fields in both runs. Activa-

tions of the ventral attention networks were less robust. For the hori-

zontal run, for example, the invalid versus valid contrast revealed an

involvement of the middle frontal gyrus predominantly in the right

hemisphere and no significant activation close to the seed regions for

the temporoparietal junction at the given threshold. However,

the temporoparietal junction was significantly activated in the

vertical run.

3.3 | Bayesian model selection

3.3.1 | Output regions of the bDCM

As shown in the top row of Figure 5, RFX Bayesian model selection

identified different winning models for the two runs. While in the ver-

tical run, the IPS output model was superior to the models with other

regions [exceedance probability (EP) = 81%], results for the horizontal

run did not dissociate between the TPJ (EP = 48%) and the IPS model

(EP = 41%). To select a single model structure for further analyses,

we also conducted an FFX analysis (as implemented in SPM12) to

investigate which model had the highest total free energy. This analy-

sis revealed that evidence in both runs was around 100% for the IPS

only model (free energy summed over participants for the horizontal

run: IPS = �5,340.80, FEF = �5,834.72, TPJ = �5,500.46, all

regions = �5,647.16; the vertical run: IPS = �21,946.42,

FEF = �22,485.02, TPJ = �22,172.91, all regions = �22,829.19).

3.3.2 | Model selection for modalities

Testing for the different modalities (Figure 5, bottom row) revealed

that the bDCM model (with IPS as output region) had stronger model

evidence in both runs when compared with the competing models

(horizontal, EP = 99%; vertical, EP = 97%). This indicates that bDCM

provides a more plausible explanation of the data, even when

adjusting for the additional complexity.

3.4 | Model fit

3.4.1 | Reaction time data

We calculated the mean absolute error (MAE) and the R2 statistic for

the Rescorla–Wagner and bDCM models and assessed their signifi-

cance on a per-subject level by calculating permutation tests. In the

horizontal run, the bDCM (MAE, M = 0.094, SD = 0.033, percent

sig. = 50.0%; R2 score, M = 0.068, SD = 0.091, percent sig. = 57.7%)

performed similarly, when compared with the Rescorla–Wagner model

(MAE, M = 0.094, SD = 0.033, percent sig. = 50.0%; R2 score,

M = 0.062, SD = 0.08, percent sig. = 65.4%). The results of the vertical

run yielded a very similar picture indicating slight differences between

the bDCM (MAE, M = 0.095, SD = 0.037, percent sig. = 84.6%; R2

score, M = 0.122, SD = 0.144, percent sig. = 88.5%) and the Rescorla–

Wagner model (MAE, M = 0.096, SD = 0.038, percent sig. = 73.1%; R2

score, M = 0.094, SD = 0.142, percent sig. = 84.6%; see Figure 6). The

paired t-tests (Table 3) confirmed this pattern and revealed a better fit

for the vertical run, where bDCM had a lower error and greater fit than

the Rescorla–Wagner model. In contrast to the comparison between

regular fit-statistics, the results of a Leave-One-Trial-Out Cross-

validation (Section S7 in Supporting Information) showed that the

Rescorla–Wagner model generalizes slightly better than bDCM.

F IGURE 3 Box- and swarm plots of mean-reaction time data for
each participant in the eight conditions. The boxes indicate the
interquartile range (IQR), the line in the middle the median reaction

time, whiskers are extended to include the lower and upper quartiles
plus three times the IQR. Loose points indicate outliers. The ANOVA's
results are readily visible, as there are longer reaction times in invalid
trials but no apparent effects between the different target-positions

1858 STEINKAMP ET AL.

https://identifiers.org/neurovault.collection:6895
https://identifiers.org/neurovault.collection:6895


Furthermore, we evaluated how well the reaction time distribu-

tions of the two models' simulations matched the real reaction time

distribution (Figure 7). We calculated the distance between the distri-

butions of measured and simulated reaction times for each run, partic-

ipant, and cueing-condition using the Kolmogorov–Smirnov test. We

then performed paired t-tests in order to ascertain which simulation

better matches the original distribution. In all cases, the bDCM simula-

tion provided a better match (horizontal run, valid cueing, t

(25) = �5.011, p < .001, Cohen's d = 1.316, BF10 = 667.1; horizontal

run, invalid cueing, t(25) = �5.198, p < .001, Cohen's d = 1.357,

BF10 = 1,033.7; vertical run, valid cueing, t(25) = �5.145, p < .001,

Cohen's d = 1.391, BF10 = 913.9; vertical run, invalid cueing, t

(25) = �6.059, p < .001, Cohen's d = 1.634, BF10 = 7,704.4). Based

on visual inspection of the differences in reaction time distributions,

deviations were especially pronounced at the extreme ends of the

distribution.

In a final step, we also analyzed to which extent trial history

effects (i.e., effects of cueing and errors in preceding trials) are

modeled by the Rescorla–Wagner model and bDCM. The detailed

results of this analysis can be found in Section S3 in Supporting

Information. As expected, SOA did not significantly affect the mea-

sured reaction time data in any of the analyses. More interestingly,

valid cues in the previous trial had a facilitating effect on reaction

times of 11 ms (95% CI [�18 ms, �4 ms]), which was also present in

the reaction times derived from the Rescorla–Wagner model (�7 ms,

95% CI [�9 ms, �5 ms]) and the bDCM (�5 ms, 95% CI [�8 ms,

�3 ms]), indicating that both models captured trial-by-trial dependen-

cies. We also found an effect of previous error-trials in the measured

data, impeding performance in the following trials (14 ms, 95% CI

[0 ms, 27 ms]). This effect was not present in the reaction times of the

Rescorla–Wagner model and the bDCM since error trials were not

explicitly modeled.

3.4.2 | BOLD data

We also investigated whether DCM and bDCM were comparable in

their fit to the measured BOLD data. For this, we calculated the fit

statistics (mean absolute error and R2-score) for the two modeling

approaches and the two runs. Since these yield fit statistics for each

F IGURE 4 Nonparametric T-maps contrasting invalid > valid trials for the two runs (p < .05 FWEc). The purple overlay indicates the regions
where the 9 mm VOIs for the bDCM analysis were extracted (sum of the participants' masks)
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brain region, we calculated two linear mixed-effects models (MLM)

with participant as a random factor to test for a main effect or interac-

tion effects of model and fit statistic, as well as the main effect of run

and interactions between model and run. The results of the mixed-

effects models are summarized in Table 4. Importantly, we did not

find a significant main effect of model. However, there were signifi-

cant main effects of brain region. These effects did not interact with

the choice of model, indicating that the two models performed simi-

larly. A similar conclusion can be drawn when looking at the different

runs. Again, there were no significant main effects or interactions of

the factor model.

3.5 | Lesion analysis

Figure 8 depicts the results of the lesion analysis for each possible tar-

get location (i.e., both runs are presented) and each induced artificial

lesion. The effect of lesions on the validity effect seemed highly spe-

cific for the different network nodes with some lesions increasing and

other lesion decreasing the validity effect.

From a computational anatomy perspective, lesioning the left TPJ

yielded plausible effects, increasing the contralesional validity effect,

similarly to what would be expected (Beume et al., 2017; Malherbe

et al., 2018). A similar pattern was observed for the right IPS. How-

ever, simulations for this region were very noisy.

4 | DISCUSSION

We applied bDCM (Rigoux & Daunizeau, 2015) to model neural

responses and reaction times simultaneously in a spatial cueing task.

We here demonstrated that bDCM could be applied to binary

responses and continuous read-outs (i.e., reaction times). After rep-

roducing previously published cue validity effects at the behavioral

and neural level, we selected the most likely output region for the

behavioral response in the bDCM model and modeled behavioral and

functional imaging data in three different ways.

First, in terms of RFX Bayesian model comparison, different out-

put regions between the two runs were preferred. Relatively clear evi-

dence in the vertical run pointed to a preference for the IPS, a central

hub region of the dorsal attention network. However, in the horizon-

tal run, there was no clear evidence for either IPS or TPJ (a key region

of the ventral attention network). Still, the FFX model comparison

favored the IPS model in both runs. A possible reason for this discrep-

ancy might be that the target location influences neural states in IPS

in the vertical run less compared with the horizontal run due to the

F IGURE 5 Bayesian model selection for the output regions (top row) and modality (bottom row). Due to the different scaling FFX model
evidence, the horizontal and vertical runs are plotted separately. The models were normalized by subtracting the log likelihood of the Null-Model.
Please note that the y-axis for the FFX analysis is on a logarithmic scale
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lateralization of the visual field. Thus, for some participants, neural

states in TPJ might provide a more apparent separation between valid

and invalid trials in the horizontal run. However, the more substantial

evidence for the dorsal hub-region (i.e., IPS) in the FFX analysis also

speaks for a better representation of reaction times and BOLD data

by neural responses in IPS, compared with the other regions in our

comparison (i.e., FEF and TPJ).

Furthermore, bDCM, as a novel approach, was compared with

both classical DCM and the behavioral Rescorla–Wagner model. As

the three models serve different purposes and rely on different data,

we analyzed the models' outputs and fit statistics. We also accounted

for differences in model complexity by using Bayesian model selection

to compare bDCM against DCM and two bDCM models, which uti-

lized different aspects of the Rescorla–Wagner model.

Although the original article on bDCM suggested that incorporat-

ing behavior leads to an advantage in representing the BOLD

response of bDCM over classical DCM, we did not find significant dif-

ferences between both modeling approaches. The benefit of including

behavioral measures might only be prevalent when BOLD recordings

are noisier than behavioral recordings (Rigoux & Daunizeau, 2015).

Furthermore, we compared simulated reaction times of bDCM

and our implementation of the Rescorla–Wagner model (Vossel,

F IGURE 6 Boxplots comparing the different fit statistics across models in the horizontal run. Please note that for the R2-score a higher value
is better, while the opposite is true for the mean absolute error. The dashed lines between the boxplots indicate individual participants

TABLE 3 Paired t-tests between the
fit statistics of bDCM and Rescorla–
Wagner models

Run Error T (df 25) p-value 95% CI Cohen-d BF10

Horizontal MAE 0.496 .624 [�0 0] 0.006 0.232

Horizontal R2 0.82 .42 [�0.01 0.02] 0.064 0.281

Vertical MAE �2.496 .019 [�0 �0] 0.049 2.705

Vertical R2 2.664 .013 [0.01 0.05] 0.197 3.713

Note: The differences between the fit statistics favor the bDCM model.
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F IGURE 7 Left column, Kolmogorov–Smirnov distance between the simulated responses between the measured reaction times and bDCM
or the Rescorla–Wagner model. The gray shading indicates nonsignificant differences. BDCM has, in general, a lower distance to the original
distribution, and in many cases, the tests were nonsignificant. Both models also appeared to be better in predicting the invalid reaction time
distribution. Middle column: Cumulative reaction time distribution represented by the deciles of each model. The measured reaction times (green)
have a more extensive spread than the reaction times from bDCM (blue) and the Rescorla–Wagner model (orange). The gray vertical bar indicates
the mean RT across deciles, cueing condition, and models. Right column: The paired difference between the deciles of the Rescorla–Wagner
(orange) model and bDCM (blue). Differences are especially large in more extreme deciles
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Mathys, et al., 2014). BDCM had a slightly better fit to the reaction

time data (reflected in higher R2-score and lower error) and represen-

ted the distribution of reaction times a bit more closely in both valid

and invalid trials (reflected in significantly lower distances, which were

calculated by the Kolmogorov–Smirnov test). Both the Rescorla–

Wagner model and bDCM did not model the extreme ends of the

reaction time distributions well. However, bDCM deviated less from

the measured data. Interestingly, bDCM can similarly to the Rescorla-

Wagner model capture trial-by-trial effects present in the measured

data, without explicitly modelling them.

This comparison was not performed to favor one model over the

other. Instead, it was conducted to evaluate bDCM against the perfor-

mance of a highly specialized, validated, and less complex model in a

cueing task. Despite the superior fit of bDCM, the Rescorla–Wagner

model performed exceptionally well, given the small number of

parameters. Hence, if we penalized for model complexity, the

Rescorla–Wagner model would probably be identified as the pre-

ferred model for reaction times. In an additional analysis (Section S7

in Supporting Information), we provided evidence for this notion: the

Rescorla–Wagner has a slightly (but significantly) better generalization

performance (as assessed by the PRESS statistic). BDCM also incorpo-

rates the dynamics of the BOLD response and operates on a timescale

of seconds rather than trials. Thus, having only four parameters more

than the classical DCM (69 parameters) seems to be an adequate

increase in complexity. We further validated this notion by incorporat-

ing the Rescorla–Wagner model's results into competing bDCM

models and performing a Bayesian model comparison. This revealed

that the initial bDCM was superior to models in which hidden states

or predicted reaction times were guided through the bDCM.

BDCM also provided a more detailed representation of reaction

time distributions. This property might be helpful to uncover relevant

aspects for assessing cognitive functions, as previously demonstrated

for other modeling approaches. For example, parameters of drift-

diffusion models of reaction times (Smith & Ratcliff, 2009) were found

to be related to general intelligence (van Ravenzwaaij, Brown, &

Wagenmakers, 2011) and working memory (Schmiedek, Oberauer,

Wilhelm, Süß, & Wittmann, 2007). Furthermore, reaction time distri-

butions have been used to categorize healthy participants and

patients suffering from psychiatric disorders (Kaiser et al., 2008;

Karalunas, Geurts, Konrad, Bender, & Nigg, 2014; Vinogradov, Poole,

Willis-Shore, Ober, & Shenaut, 1998). The Rescorla–Wagner model

could also be used for such differentiations, especially in the domain

of belief-updating (Mengotti et al., 2017). By modeling a single cogni-

tive process, however, the Rescorla–Wagner model is very dependent

on the presence and size of a participant's validity effects (see Analy-

sis in Section S4 in Supporting Information, showing that the correla-

tion between model fit and cue-validity are higher for Rescorla–

Wagner than bDCM).

BDCM, on the other hand, simulated smoother reaction time dis-

tributions (larger number of nonsignificant p-values in KS-test), pro-

viding a different representation of the underlying processes.

Although bDCM may reflect a portion of variance in the reaction time

data that is not task-related, this variance could reflect the processes

of decision making in a more complex brain-dynamics-dependent mat-

ter. BDCM is a model of brain dynamics that can, in principle, be

applied to any task, while the Rescorla–Wagner model represents a

specialized model of a cognitive process.

In another analysis, we demonstrate that reaction times simulated

by both the Rescorla–Wagner model and bDCM are significantly

influenced by the cueing condition of the previous trial. This influence

is also found in the measured reaction time data (Section S3 in

Supporting Information). This is important, as it would have been pos-

sible to use different behavioral models for our comparisons, such as

drift-diffusion models (Ratcliff & McKoon, 2008). However, while the

TABLE 4 Results of the MLM
analysis for BOLD fit statistics

R2 score Mean absolute error

Coef. SE Z p > jzj Coef. SE z p > jzj
Intercept .18 0.012 15.416 0 .316 0.014 22.755 0

DCM .001 0.013 0.059 .953 0 0.016 �0.03 .976

FEF right �.046 0.012 �3.83 0 �.032 0.015 �2.14 .032

IPS left �.052 0.012 �4.345 0 �.054 0.015 �3.539 0

IPS right �.063 0.012 �5.265 0 �.072 0.015 �4.748 0

TPJ left �.072 0.012 �5.957 0 .029 0.015 1.895 .058

TPJ right �.076 0.012 �6.347 0 �.008 0.015 �0.505 .613

Vertical run .002 0.007 0.251 .802 .03 0.009 3.429 .001

DCM * FEF right 0 0.017 0.005 .996 0 0.021 0.013 .99

DCM * IPS left .003 0.017 0.176 .86 0 0.021 �0.003 .997

DCM * IPS right .004 0.017 0.261 .794 0 0.021 �0.006 .996

DCM * TPJ left �.003 0.017 �0.173 .863 .001 0.021 0.04 .968

DCM * TPJ right �.006 0.017 �0.368 .713 .002 0.021 0.094 .925

Vertical run * DCM .005 0.01 0.476 .634 0 0.012 �0.038 .97

Note: The table is split for mean absolute error and R2 score.
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F IGURE 8 Validity effect for simulated reaction times for each target location after simulated lesions to the indicated brain region. Boxplots
indicate the median of the data, the IQR, and the minimum and maximum values. Outliers exceed the 1.5 � IQR criterion
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Posner task could be modeled in terms of evidence accumulation for

the respective side where the stimulus might occur, drift-diffusion

models do not necessarily capture essential aspects of the task (such

as trial history and learning effects). Indeed, multiple studies have

shown that endogenous cueing tasks (like Posner's cueing task) are

not affected by manipulation of information gathering (for example,

stimulus properties) (Barbot, Xue, & Carrasco, 2020; Carrasco, 2011)

and that behavioral effects are mostly driven by expectation effects

(Eckstein, Shimozaki, & Abbey, 2002). Thus, the Rescorla–Wagner

model seems more suited to model the temporal dependencies

between trials.

As bDCM can be applied to model different behavioral read-outs

in various tasks, it can enhance our understanding of how DCM's con-

nectivity parameters relate to behavior. So far, this link could only be

established using indirect methods, such as correlations between

DCM parameters and behavioral measures across participants. For

example, DCM's task connectivity parameters have been related to

symptoms of depression and schizophrenia (Desseilles et al., 2011;

Schlösser et al., 2008; Wu et al., 2014), and have been correlated with

behavioral measures before and after interventions using noninvasive

neurostimulation (Grefkes et al., 2010). Although the investigation of

such associations does not allow causal interpretations, bDCM

enables more firm conclusions on how brain dynamics in selected

brain regions impact behavior.

Furthermore, brain and behavioral dynamics both regularize

bDCM, so that the model parameters encode the most reliable set of

information from both sources (Rigoux & Daunizeau, 2015). This pro-

cedure could yield more robust and stable connectivity estimates and

encode more specific information.

Since bDCM is a generative model, it can also be used to simulate

how alterations to the underlying brain network might change behav-

ior (Rigoux & Daunizeau, 2015). This allows simulating the behavioral

effects of neuromodulatory interventions and the generation of new

hypotheses and experiments. The guidance and information of com-

putational models will eventually lead to a better understanding of the

neural mechanisms underlying behavioral outcomes (Kriegeskorte &

Douglas, 2018; Turner et al., 2017).

Unfortunately, applying artificial lesions to the network model in

our study revealed technical problems of this approach. More specifi-

cally, the estimated models lacked numerical stability, limiting our

results' meaning and interpretability. Even though some of the

resulting patterns were consistent with the literature, for example, an

increase of the contralesional validity effect after a lesion to left TPJ

(Beume et al., 2017; Malherbe et al., 2018), other simulations were

highly variable. Hence, the relatively novel bDCM approach's potential

problems, such as over-fitting and nongeneralizability, need to be con-

sidered in future studies.

5 | CONCLUSION

BDCM was applied and extended to model reaction time data of a

larger sample of participants. Our findings provided evidence for a

considerable additional value of the method compared with a purely

behavioral model and classical DCM and identified practical use issues.

Data suggest that bDCM is a promising tool to enhance our under-

standing of how brain dynamics generate specific behavioral patterns.
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